By combining atomic force microscopy (AFM) with a Hadamard productbased image reconstruction algorithm, scientists ...
Anyone who has ever taken the time to critically examine a walnut knows that a two-dimensional photograph fails in many respects to truly convey the unique features--the nicks, crannies, valleys, and ...
A collaborative team of four professors and several graduate students from the Departments of Chemistry and Biochemical ...
Photo-induced force microscopy (PiFM) offers nanoscale defect characterization in semiconductors, combining chemical specificity with high-resolution imaging.
Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
New model extracts stiffness and fluidity from AFM data in minutes, enabling fast, accurate mechanical characterization of living cells at single-cell resolution. (Nanowerk Spotlight) Cells are not ...
The developed high-speed three-dimensional scanning force microscopy enabled the measurement of 3D force distribution at solid-liquid interfaces at 1.6 s/3D image. With this technique, 3D hydration ...
When it comes to analyzing living cells, challenging biological samples and thick, multilayer tissue samples require purposefully designed instrumentation. BioAFMs are ideal when it comes to these ...
Researchers at Nano Life Science Institute (WPI-NanoLSI), Kanazawa University report in Small Methods the 3D imaging of a suspended nanostructure. The technique used is an extension of atomic force ...