Scientists at Duke-NUS Medical School have developed two powerful computational tools that could transform how researchers ...
Spatial transcriptomics provides a unique perspective on the genes that cells express and where those cells are located. However, the rapid growth of the technology has come at the cost of ...
This figure shows how the STAIG framework can successfully identify spatial domains by integrating image processing and contrastive learning to analyze spatial transcriptomics data effectively.
Spatial transcriptomics is a technique that provides information about gene expression patterns within intact tissues. This technology employs various methodologies, including in situ sequencing (ISS) ...
Conventional transcriptomic techniques have revealed much about gene expression at the population and single-cell level—but they overlook one crucial factor: spatial context. In musculoskeletal ...
Biological tissues are made up of different cell types arranged in specific patterns, which are essential to their proper functioning. Understanding these spatial arrangements is important when ...